Integrals of the form \( \int \sqrt{\frac{a-x}{x-b}} dx \) or \( \int \sqrt{\frac{a-x}{x+b}} dx \) often simplify with a trigonometric substitution.
Here \( \int \sqrt{\frac{A-x}{x-B}} dx \), let \( x = B\cos^2\theta + A\sin^2\theta \).
For \( \int \sqrt{\frac{a-x}{x+b}} \ dx \), complete the square in \( (a-x)(x+b) \) to get \( \sqrt{R^2 - (x-h)^2} \) form, then use \( x-h = R\sin\theta \).
The integral \( \int \frac{P(x)}{\sqrt{ax^2+bx+c}} dx \) can often be split into \( K \int \frac{2ax+b}{\sqrt{ax^2+bx+c}} dx + L \int \frac{1}{\sqrt{ax^2+bx+c}} dx \).
The form \( \int_{-a}^{a} \sqrt{a^2-x^2} dx \) is half the area of a circle, \( \frac{1}{2}\pi a^2 \). This integral doesn't immediately simplify to that.