Observe that:
\[
\sin^2(\sin x) + \cos^2(\cos x) \leq 1 + 1 = 2,\ \text{but not a standard simplification}
\]
However, the key is symmetry. Let \( f(x) = x (\sin^2(\sin x) + \cos^2(\cos x)) \).
Check \( f(\pi - x) \):
\[
f(\pi - x) = (\pi - x) (\sin^2(\sin (\pi - x)) + \cos^2(\cos (\pi - x))) = (\pi - x)(\sin^2(\sin x) + \cos^2(\cos x))
\]
So, \( f(\pi - x) + f(x) = \pi (\sin^2(\sin x) + \cos^2(\cos x)) \).
Thus,
\[
\int_0^{\pi} f(x) dx = \frac{1}{2} \int_0^{\pi} \left[ f(x) + f(\pi - x) \right] dx = \frac{1}{2} \int_0^{\pi} \pi (\sin^2(\sin x) + \cos^2(\cos x)) dx
\]
\[
= \frac{\pi}{2} \int_0^{\pi} (\sin^2(\sin x) + \cos^2(\cos x)) dx
\]
Since average value of these periodic expressions over \( [0, \pi] \approx 1 \), so integral \( \approx \pi \), thus:
\[
\text{Answer} = \frac{\pi^2}{2}
\]