Step 1: Simplify the integrand.
The given integral is:
\[
I = \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx.
\]
Let \( x \to \frac{\pi}{2} - x \). Then, \( \sin x \to \cos x \) and \( \cos x \to \sin x \). Substituting:
\[
I = \int_{0}^{\pi/2} \frac{\cos x - \sin x}{1 + \sin x \cos x} \, dx.
\]
Step 2: Add and simplify.
Adding the original and transformed integrals:
\[
2I = \int_{0}^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx + \int_{0}^{\pi/2} \frac{\cos x - \sin x}{1 + \sin x \cos x} \, dx = 0.
\]
Hence:
\[
I = 0.
\]