We are given:
\[
I = \int_0^{\frac{\pi}{2}} \sin x \cos x \, dx
\]
Using the trigonometric identity \( \sin(2x) = 2 \sin x \cos x \), we can rewrite the integral as:
\[
I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(2x) \, dx
\]
Now, the integral of \( \sin(2x) \) is \( -\frac{1}{2} \cos(2x) \), so:
\[
I = \frac{1}{2} \left[ -\frac{1}{2} \cos(2x) \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \left( -\frac{1}{2} (\cos(\pi) - \cos(0)) \right)
\]
Since \( \cos(\pi) = -1 \) and \( \cos(0) = 1 \), we have:
\[
I = \frac{1}{2} \left( -\frac{1}{2} (-1 - 1) \right) = \frac{1}{2} \left( \frac{1}{2} \times 2 \right) = \frac{1}{2}
\]
Thus, the correct answer is \( \frac{1}{2} \).