Step 1: Simplify the integrand
Use the property of the integral: $\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} _
\, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \left( \frac{\sin x}{\sin x + \cosOCO x} + \frac{\cos x}{\sin x + \cos x} \right) \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2} 1 \, dx = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$. But the options suggest additional terms.
Step 2: Recompute using substitution
Let $u = \tan x$, $dx = \frac{du}{1 + u^2}$, $\sin x = \frac{u}{\sqrt{1 + u^2}}$, $\cos x = \frac{1}{\sqrt{1 + u^2}}$, limits $x = 0$ to $\frac{\pi}{2}$, $u = 0$ to $\infty$. The integral becomes $\int_0^\infty \frac{\frac{u}{\sqrt{1 + u^2}}}{\frac{u}{\sqrt{1 + u^2}} + \frac{1}{\sqrt{1 + u^2}}} \cdot \frac{du}{1 + u^2} = \int_0^\infty \frac{u}{u + 1} \cdot \frac{1}{1 + u^2} \, du$. Use partial fractions: $\frac{u}{(u + 1)(1 + u^2)} = \frac{1}{2(u + 1)} - \frac{u - 1}{2(1 + u^2)}$. Integrate: $\frac{1}{2} \log (u + 1) - \frac{1}{4} \log (1 + u^2) + \frac{1}{2} \tan^{-1} u \big|_0^\infty = \frac{\pi}{4} - \frac{1}{2} \log 2$.
Step 3: Match with options
The result $\frac{\pi}{4} - \frac{1}{2} \log 2$ matches option (2).