Question:

\( \int_0^1 \alpha^k x^k dx = \)

Show Hint

Riemann sums approximate definite integrals using finite summation expressions — especially useful for limits!
Updated On: May 18, 2025
  • \( \lim_{n \to \infty} \frac{\alpha^k(1 + 2^k + 3^k + \ldots + n^k)}{n^{k+1}} \)
  • \( \lim_{n \to \infty} \frac{\alpha^k + \alpha^k + \ldots + \alpha^k}{n^{k+1}} \)
  • \( \lim_{n \to \infty} \frac{1}{n} \sum \left( \frac{7}{n} \right)^k \)
  • \( \lim_{n \to \infty} \frac{1}{n} \sum \left( \frac{27}{n} \right)^k \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We consider Riemann sums for the integral:
\[ \int_0^1 \alpha^k x^k dx = \lim_{n \to \infty} \sum_{r=1}^n \alpha^k \left( \frac{r}{n} \right)^k \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{\alpha^k}{n^{k+1}} \sum_{r=1}^n r^k \] \[ = \lim_{n \to \infty} \frac{\alpha^k(1 + 2^k + \ldots + n^k)}{n^{k+1}} \]
Was this answer helpful?
0
0