In the Linear Programming Problem (LPP), find the point/points giving the maximum value for \( Z = 5x + 10y\) subject to the constraints:
\[x + 2y \leq 120 \\ x + y \geq 60 \\ x - 2y \geq 0 \\ x \geq 0, y \geq 0\]
Assertion (A): The shaded portion of the graph represents the feasible region for the given Linear Programming Problem (LPP).
Reason (R): The region representing \( Z = 50x + 70y \) such that \( Z < 380 \) does not have any point common with the feasible region.
For a Linear Programming Problem (LPP), the given objective function \( Z = 3x + 2y \) is subject to constraints: \[ x + 2y \leq 10, \] \[ 3x + y \leq 15, \] \[ x, y \geq 0. \]
The correct feasible region is:
Linear programming is a mathematical technique for increasing the efficiency and effectiveness of operations under specific constraints. The main determination of linear programming is to optimize or minimize a numerical value. It is built of linear functions with linear equations or inequalities restricting variables.