Step 1: Understanding the Fringe Width Formula In Young’s double slit experiment, the fringe width \( \beta \) is given by: \[ \beta = \frac{\lambda D}{d} \] where: - \( \lambda = 400 \) nm = \( 400 \times 10^{-9} \) m (wavelength of light), - \( D = 2 \) m (distance between slits and screen), - \( d = 2 \) mm = \( 2 \times 10^{-3} \) m (distance between slits).
Step 2: Calculating Fringe Width Substituting the given values: \[ \beta = \frac{(400 \times 10^{-9}) \times 2}{2 \times 10^{-3}} \] \[ \beta = \frac{800 \times 10^{-9}}{2 \times 10^{-3}} \] \[ \beta = 0.4 \times 10^{-3} \text{ m} \]
Step 3: Conclusion Thus, the fringe width is \( 0.4 \times 10^{-3} \) m.
A tightly wound long solenoid carries a current of 1.5 A. An electron is executing uniform circular motion inside the solenoid with a time period of 75 ns. The number of turns per meter in the solenoid is …………