The fringe width \( w \) in Young’s double slit experiment is given by the formula:
\[ w = \frac{\lambda D}{d} \]
Where:
\[ w = \frac{400 \times 10^{-9} \times 2}{2 \times 10^{-3}} = \frac{800 \times 10^{-9}}{2 \times 10^{-3}} \]
\[ w = 0.4 \times 10^{-3} \, \text{m} = \boxed{0.4 \, \text{mm}} \]
The fringe width in the given setup is \( \boxed{0.4 \, \text{mm}} \).
Step 1: Understanding the Fringe Width Formula In Young’s double slit experiment, the fringe width \( \beta \) is given by: \[ \beta = \frac{\lambda D}{d} \] where: - \( \lambda = 400 \) nm = \( 400 \times 10^{-9} \) m (wavelength of light), - \( D = 2 \) m (distance between slits and screen), - \( d = 2 \) mm = \( 2 \times 10^{-3} \) m (distance between slits).
Step 2: Calculating Fringe Width Substituting the given values: \[ \beta = \frac{(400 \times 10^{-9}) \times 2}{2 \times 10^{-3}} \] \[ \beta = \frac{800 \times 10^{-9}}{2 \times 10^{-3}} \] \[ \beta = 0.4 \times 10^{-3} \text{ m} \]
Step 3: Conclusion Thus, the fringe width is \( 0.4 \times 10^{-3} \) m.
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.