Step 1:
The phase difference \( \phi_1 \) for path difference \( \frac{\lambda}{6} \) is calculated as:
\[
\phi_1 = \frac{2 \pi}{\lambda} \times \frac{\lambda}{6} = \frac{\pi}{3}
\]
The intensity \( I_1 \) for this path difference is given by:
\[
I_1 = 4 I_0 \cos^2 \frac{\phi_1}{2}
\]
\[
I_1 = 4 I_0 \cos^2 \left( \frac{\pi}{6} \right)
\]
Since \( \cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2} \), we get:
\[
I_1 = 3 I_0
\]
Step 2:
For the second path difference \( \frac{\lambda}{12} \), the phase difference \( \phi_2 \) is calculated as:
\[
\phi_2 = \frac{2 \pi}{\lambda} \times \frac{\lambda}{12} = \frac{\pi}{6}
\]
The intensity \( I_2 \) for this path difference is:
\[
I_2 = 4 I_0 \cos^2 \frac{\phi_2}{2}
\]
\[
I_2 = 4 I_0 \cos^2 \left( \frac{\pi}{12} \right)
\]
Using \( \cos \left( \frac{\pi}{12} \right) \approx 0.9659 \), we get:
\[
I_2 = 4 I_0 \times (0.9659)^2 = 4 I_0 \times 0.933
\]
Thus, \( I_2 = 4 I_0 \times 0.933 \).
Step 3:
The ratio of intensities is:
\[
\frac{I_1}{I_2} = \frac{3 I_0}{4 I_0 \cos^2 15^\circ}
\]
\[
\frac{I_1}{I_2} = \frac{3}{4 \cos^2 15^\circ}
\]
Thus, the ratio of intensities is \( \frac{3}{4 \cos^2 15^\circ} \).