Question:

In triangle PQR, \( PQ = 12 \) cm, \( PR = 9 \) cm, and \( \angle Q + \angle R = 120^\circ \). Find the length of QR.

Show Hint

When you know two sides and the included angle, always use the cosine rule. Use angle sum property to find the third angle if needed.
Updated On: Jul 28, 2025
  • \( \dfrac{15}{\sqrt{2}} \) cm
  • \( 3\sqrt{13} \) cm
  • \( 5\sqrt{5} \) cm
  • \( 5\sqrt{17} \) cm
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given: - \( PQ = 12 \) cm
- \( PR = 9 \) cm
- \( \angle Q + \angle R = 120^\circ \Rightarrow \angle P = 60^\circ \)
We will apply the Cosine Rule: \[ QR^2 = PQ^2 + PR^2 - 2 PQ PR \cos(\angle P) \] Substitute the values: \[ QR^2 = 12^2 + 9^2 - 2 12 9 \cos(60^\circ) = 144 + 81 - 216 \frac{1}{2} = 225 - 108 = 117 \Rightarrow QR = \sqrt{117} = \sqrt{9 13} = 3\sqrt{13} \] Final Answer: \( \boxed{3\sqrt{13} \text{ cm}} \)
Was this answer helpful?
0
0