A regular dodecagon (12-sided regular polygon) is inscribed in a circle of radius \( r \) cm as shown in the figure. The side of the dodecagon is \( d \) cm. All the triangles (numbered 1 to 12 in the figure) are used to form squares of side \( r \) cm, and each numbered triangle is used only once to form a square. The number of squares that can be formed and the number of triangles required to form each square, respectively, are:
Consider a directed graph \( G = (V,E) \), where \( V = \{0,1,2,\dots,100\} \) and
\[ E = \{(i,j) : 0 < j - i \leq 2, \text{ for all } i,j \in V \}. \] Suppose the adjacency list of each vertex is in decreasing order of vertex number, and depth-first search (DFS) is performed at vertex 0. The number of vertices that will be discovered after vertex 50 is:
Create empty stack S Set x = 0, flag = 0, sum = 0 Push x onto S while (S is not empty){ if (flag equals 0){ Set x = x + 1 Push x onto S } if (x equals 8): Set flag = 1 if (flag equals 1){ x = Pop(S) if (x is odd): Pop(S) Set sum = sum + x } } Output sumThe value of \( sum \) output by a program executing the above pseudocode is:
def f(a, b): if (a == 0): return b if (a % 2 == 1): return 2 * f((a - 1) / 2, b) return b + f(a - 1, b) print(f(15, 10))The value printed by the code snippet is 160 (Answer in integer).
Consider the following tables, Loan and Borrower, of a bank.
Query: \[ \pi_{\text{branch\_name}, \text{customer\_name}} (\text{Loan} \bowtie \text{Borrower}) \div \pi_{\text{branch\_name}}(\text{Loan}) \] where \( \bowtie \) denotes natural join. The number of tuples returned by the above relational algebra query is 1 (Answer in integer).