We are given that:
\[
\cot \frac{A}{2} : \cot \frac{B}{2} : \cot \frac{C}{2} = 3 : 7 : 9
\]
This ratio is related to the sides of the triangle by the formula:
\[
\frac{a}{\sin \frac{A}{2}} = \frac{b}{\sin \frac{B}{2}} = \frac{c}{\sin \frac{C}{2}} = 2R
\]
Thus, the ratio of the sides is the inverse of the cotangent ratio. Therefore, we get:
\[
a : b : c = \frac{1}{\cot \frac{A}{2}} : \frac{1}{\cot \frac{B}{2}} : \frac{1}{\cot \frac{C}{2}} = 8 : 6 : 5
\]
Hence, the correct answer is option (1) \( 8 : 6 : 5 \).