Given:
\[
\cos A + \cos C = 4 \sin^2 \frac{B}{2}
\]
Using the identity:
\[
\cos A + \cos C = 2 \cos \left( \frac{A - C}{2} \right) \cos \left( \frac{A + C}{2} \right)
\]
And since \(A + B + C = \pi \Rightarrow A + C = \pi - B \Rightarrow \frac{A + C}{2} = \frac{\pi - B}{2}\), so:
\[
\cos A + \cos C = 2 \cos \left( \frac{A - C}{2} \right) \cos \left( \frac{\pi - B}{2} \right)
= 2 \cos \left( \frac{A - C}{2} \right) \sin \left( \frac{B}{2} \right)
\]
Now equate this to RHS:
\[
2 \cos \left( \frac{A - C}{2} \right) \sin \left( \frac{B}{2} \right) = 4 \sin^2 \frac{B}{2}
\]
Cancel one \(\sin \frac{B}{2}\) from both sides:
\[
2 \cos \left( \frac{A - C}{2} \right) = 4 \sin \frac{B}{2} \Rightarrow \cos \left( \frac{A - C}{2} \right) = 2 \sin \frac{B}{2}
\]
This equation holds when \(\frac{A - C}{2} = \frac{\pi}{3}, \frac{B}{2} = \frac{\pi}{6}\) etc., eventually leading to angle values \(A = 90^\circ\), \(B = 60^\circ\), \(C = 30^\circ\).
Using sine rule:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\Rightarrow a : b : c = \sin A : \sin B : \sin C = 1 : \frac{\sqrt{3}}{2} : \frac{1}{2}
\]
So perimeter \(= a + b + c = 1 + \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{3 + \sqrt{3}}{2}\), and \(a + c = 1 + \frac{1}{2} = \frac{3}{2}\)
Thus:
\[
\text{Required Ratio} = \frac{\text{Perimeter}}{a + c} = \frac{\frac{3 + \sqrt{3}}{2}}{\frac{3}{2}} = \frac{3 + \sqrt{3}}{3} \approx \frac{3}{2}
\]
Hence, best fit ratio is \(3 : 2\).