Step 1: Understanding the Given Ratio
The given condition:
\[
b + c : c + a : a + b = 7:8:9
\]
Using the sum property in a triangle:
\[
(b + c) + (c + a) + (a + b) = 2(a + b + c).
\]
Setting \( 7x, 8x, 9x \) as the respective values:
\[
7x + 8x + 9x = 2(a + b + c).
\]
Step 2: Finding Side Ratios
Solving for \( a + b + c \):
\[
a + b + c = \frac{24x}{2} = 12x.
\]
Now, express the sides as:
\[
a = \frac{(8x + 9x - 7x)}{2} = \frac{10x}{2} = 5x,
\]
\[
b = \frac{(7x + 9x - 8x)}{2} = \frac{8x}{2} = 4x,
\]
\[
c = \frac{(7x + 8x - 9x)}{2} = \frac{6x}{2} = 3x.
\]
Thus, the sides are in the ratio:
\[
a : b : c = 5 : 4 : 3.
\]
Step 3: Applying Cosine Rule to Find the Smallest Angle
Since \( c = 3x \) is the smallest side, we use the cosine rule:
\[
\cos C = \frac{a^2 + b^2 - c^2}{2ab}.
\]
Substituting \( a = 5x \), \( b = 4x \), and \( c = 3x \):
\[
\cos C = \frac{(5x)^2 + (4x)^2 - (3x)^2}{2(5x)(4x)}.
\]
\[
\cos C = \frac{25x^2 + 16x^2 - 9x^2}{2(20x^2)} = \frac{32x^2}{40x^2} = \frac{4}{5}.
\]
Step 4: Finding the Smallest Angle
\[
C = \cos^{-1} \left( \frac{4}{5} \right).
\]
Thus, the smallest angle is:
\[
\boxed{\cos^{-1} \left( \frac{4}{5} \right).}
\]