In triangle \( \triangle ABC \), we are given that the ratios of the sums of sides are \( b+c : c+a : a+b = 7:8:9 \). Let's express these sums in terms of a common parameter \( k \):
\( b+c = 7k \), \( c+a = 8k \), and \( a+b = 9k \).
Now, let's add these equations:
\( (b+c) + (c+a) + (a+b) = 7k + 8k + 9k = 24k \)
Which simplifies to:
\( 2(a+b+c) = 24k \Rightarrow a+b+c = 12k \)
Let's express each side in terms of \( a, b, \) and \( c \):
\( b = 12k - (8k) = 4k \)
\( c = 12k - (9k) = 3k \)
\( a = 12k - (7k) = 5k \)
The sides of the triangle are \( a = 5k \), \( b = 4k \), and \( c = 3k \).
Now we need to determine the smallest angle. By the law of cosines:
\( c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \)
Plug in the values:
\( (3k)^2 = (5k)^2 + (4k)^2 - 2(5k)(4k)\cos(C) \)
\( 9k^2 = 25k^2 + 16k^2 - 40k^2\cos(C) \)
\( 9 = 25 + 16 - 40\cos(C) \)
\( 9 = 41 - 40\cos(C) \)
\( 40\cos(C) = 32 \)
\( \cos(C) = \frac{4}{5} \)
This implies the smallest angle \( C \) is:
\( C = \cos^{-1} \left( \frac{4}{5} \right) \)
Thus, the smallest angle in radians is \( \cos^{-1} \left( \frac{4}{5} \right) \).