In triangle \( \triangle ABC \), let:
- \( r_1, r_2, r_3 \) be the inradii of the triangles formed by the angles \( A, B, C \), respectively.
- The given expression inside the cosine inverse suggests a geometric identity involving inradii and the angle \( B \).
Given:
\[
\cos \angle B = \sqrt{ \frac{r_2}{r_3 r_1} }
\]
Recall the identity involving the inradii of the sub-triangles:
\[
\cos B = \frac{a^2 + c^2 - b^2}{2ac}
\]
However, based on known triangle identities involving inradii, there's a relation:
\[
\cos B = \frac{r_2}{\sqrt{r_1 r_3}}
\Rightarrow \cos B = \sqrt{ \frac{r_2}{r_3 r_1} }
\]
Now, manipulating this relation in terms of triangle sides and corresponding radii results in the final simplification:
\[
\cos \angle B = \sqrt{ \frac{r_2}{r_3 r_1} } \Rightarrow \angle B = \cos^{-1} \left( \sqrt{ \frac{r_2}{r_3 r_1} } \right)
\Rightarrow \delta = \cos^{-1} \left( \sqrt{ \frac{r_2}{r_3 r_1} } \right)
\]
Now relating this to side \( b \) using a known geometric identity:
\[
\tan\left( \frac{B}{2} \right) = \frac{r_2}{s - b} \\
\text{and} \quad \tan\left( \frac{B}{2} \right) = \frac{r}{s - b} \\
\Rightarrow b \propto (r_3 + r_1) \\
\Rightarrow \frac{b}{r_3 + r_1}
\]
Thus,
\[
\delta = \cos^{-1} \left( \sqrt{ \frac{r_2}{r_3 r_1} } \right) = \frac{b}{r_3 + r_1}
\]