In any triangle \( \triangle ABC \), it holds that:
\[
\cot A + \cot B = \frac{\sin(A + B)}{\sin A \sin B} = \frac{\sin C}{\sin A \sin B}
\]
Similarly,
\[
(\cot A + \cot B)(\cot B + \cot C)(\cot C + \cot A) = \frac{\sin C}{\sin A \sin B} \cdot \frac{\sin A}{\sin B \sin C} \cdot \frac{\sin B}{\sin A \sin C}
\]
Multiplying:
\[
= \frac{\sin C \cdot \sin A \cdot \sin B}{(\sin A \sin B)^2 \cdot \sin C^2}
= \frac{1}{\sin A \sin B \sin C}
= \csc A \csc B \csc C
\]