Question:

In \( \triangle ABC \), \( (\cot A + \cot B)(\cot B + \cot C)(\cot C + \cot A) = \)

Show Hint

Use standard identities and sum of angles in triangle to simplify expressions involving cotangents.
Updated On: May 15, 2025
  • \( \sec A \sec B \sec C \)
  • \( \tan A \tan B \tan C \)
  • \( \mathbf{\csc A \csc B \csc C} \)
  • \( \cot A \cot B \cot C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

In any triangle \( \triangle ABC \), it holds that: \[ \cot A + \cot B = \frac{\sin(A + B)}{\sin A \sin B} = \frac{\sin C}{\sin A \sin B} \] Similarly, \[ (\cot A + \cot B)(\cot B + \cot C)(\cot C + \cot A) = \frac{\sin C}{\sin A \sin B} \cdot \frac{\sin A}{\sin B \sin C} \cdot \frac{\sin B}{\sin A \sin C} \] Multiplying: \[ = \frac{\sin C \cdot \sin A \cdot \sin B}{(\sin A \sin B)^2 \cdot \sin C^2} = \frac{1}{\sin A \sin B \sin C} = \csc A \csc B \csc C \]
Was this answer helpful?
0
0