Question:

In \( \triangle ABC \), \( \angle B = 60^\circ \) and \( \angle A = 75^\circ \). If a point \( D \) divides \( BC \) in the ratio \( 2:3 \), then \( \sin \angle BAD : \sin \angle CAD = \)

Show Hint

Apply the sine rule to triangles \( ABD \) and \( ACD \). The ratio of sines of the angles \( \angle BAD \) and \( \angle CAD \) will be proportional to the ratio of the segments \( BD \) and \( DC \) and the sines of the angles \( \angle B \) and \( \angle C \).
Updated On: May 12, 2025
  • \( \sqrt{2} : \sqrt{3} \)
  • \( \sqrt{3} : 2 \)
  • \( \sqrt{3} : \sqrt{2} \)
  • \( 3 : \sqrt{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

In \( \triangle ABC \), \( \angle A = 75^\circ \) and \( \angle B = 60^\circ \).
The sum of angles in a triangle is \( 180^\circ \), so \( \angle C = 180^\circ - (75^\circ + 60^\circ) = 180^\circ - 135^\circ = 45^\circ \).
Let \( BD : DC = 2 : 3 \).
Let \( BD = 2k \) and \( DC = 3k \) for some \( k>0 \).
Using the sine rule in \( \triangle ABD \): \( \frac{BD}{\sin \angle BAD} = \frac{AD}{\sin \angle B} \implies \sin \angle BAD = \frac{BD \sin B}{AD} = \frac{2k \sin 60^\circ}{AD} = \frac{k \sqrt{3}}{AD} \).
Using the sine rule in \( \triangle ACD \): \( \frac{DC}{\sin \angle CAD} = \frac{AD}{\sin \angle C} \implies \sin \angle CAD = \frac{DC \sin C}{AD} = \frac{3k \sin 45^\circ}{AD} = \frac{3k}{AD \sqrt{2}} \).
The ratio \( \sin \angle BAD : \sin \angle CAD = \frac{k \sqrt{3}}{AD} : \frac{3k}{AD \sqrt{2}} = \frac{\sqrt{3}}{1} : \frac{3}{\sqrt{2}} = \sqrt{3} \sqrt{2} : 3 = \sqrt{6} : 3 = \sqrt{2} \sqrt{3} : \sqrt{3} \sqrt{3} = \sqrt{2} : \sqrt{3} \).
Was this answer helpful?
0
0