In \( \triangle ABC \), \( \angle B = 60^\circ \) and \( \angle A = 75^\circ \). If a point \( D \) divides \( BC \) in the ratio \( 2:3 \), then \( \sin \angle BAD : \sin \angle CAD = \)
Show Hint
Apply the sine rule to triangles \( ABD \) and \( ACD \). The ratio of sines of the angles \( \angle BAD \) and \( \angle CAD \) will be proportional to the ratio of the segments \( BD \) and \( DC \) and the sines of the angles \( \angle B \) and \( \angle C \).