Let us analyze the given logic circuit and find the values of \( X \) and \( Y \).
The first AND gate has inputs \( A \) and \( B \). The output \( E \) will be:
\[ E = A \cdot B. \]
The second AND gate has inputs \( A \) and \( E \) (output from the first gate). The output \( X \) will be:
\[ X = A \cdot E = A \cdot (A \cdot B) = A^2 \cdot B. \]
The OR gate takes inputs \( A \) and \( B \) and gives the output \( Y \):
\[ Y = A + B. \]
| A | B | E | X | Y | |---|---|---|---|---| | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 0 | 1 | | 1 | 0 | 0 | 0 | 1 | | 1 | 1 | 1 | 1 | 1 |
Thus, the values of \( X \) and \( Y \) for \( A = 1 \) and \( B = 1 \) are \( X = 1 \) and \( Y = 1 \). The correct answer is Option (1).
The logic gate equivalent to the combination of logic gates shown in the figure is
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
The logic gate equivalent to the circuit given in the figure is