An alpha particle moves along a circular path of radius 0.5 mm in a magnetic field of \( 2 \times 10^{-2} \, \text{T} \). The de Broglie wavelength associated with the alpha particle is nearly
(Planck’s constant \( h = 6.63 \times 10^{-34} \, \text{Js} \))
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is