Given Values:
- Resistance (\( R \)) = 10 \( \Omega \)
- Inductance (\( L \)) = 4 H
- Capacitance (\( C \)) = 16 \( \mu \)F = \( 16 \times 10^{-6} \) F
1. Calculate the Resonant Angular Frequency (\( \omega_0 \)):
\[
\omega_0 = \frac{1}{\sqrt{LC}}
\]
\[
\omega_0 = \frac{1}{\sqrt{(4 \, \text{H}) \times (16 \times 10^{-6} \, \text{F})}}
\]
\[
\omega_0 = \frac{1}{\sqrt{64 \times 10^{-6}}}
\]
\[
\omega_0 = \frac{1}{8 \times 10^{-3}}
\]
\[
\omega_0 = 125 \, \text{rad/s}
\]
2. Calculate the Quality Factor (Q):
\[
Q = \frac{\omega_0 L}{R}
\]
\[
Q = \frac{(125 \, \text{rad/s}) \times (4 \, \text{H})}{10 \, \Omega}
\]
\[
Q = \frac{500}{10}
\]
\[
Q = 50
\]
Therefore, the quality factor of the LCR series circuit is 50.
The correct answer is (4) 50.