Question:

In the given figure container A holds an ideal gas at a pressure of $ 50\times 10^{5}\, Pa$ and a temperature of $300 \,K$. It is connected by a thin tube (and a closed) container $B$, with four times the volume of $A$. Container $B$ holds same at a pressure of $ 1.0\times 10^{5} \, Pa$ and a temperature of $400 \,K$. The valve is open allow the pressures to equalize, but the temperature of each container constant at its initial value. The final pressure in the two containers will be to

Updated On: Sep 3, 2024
  • $ 1.5\times 10^{5} \, Pa$
  • $ 2.5\times 10^{5}\, Pa$
  • $ 2.1\times 10^{5} \, Pa$
  • $ 3.5\times 10^{5} \, Pa$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is(A): \(1.5\times 10^{5} \, Pa\).

From ideal gas law For container \(A, n_{1}=\frac{p_{1} V_{1}}{R T_{1}}\) 
For container \(B\)\(n_{2}=\frac{p_{2} V_{2}}{R T_{2}}\) 
After opening the value, \(x\) moles of gas stream from container \(A\) to container \(B\) such that both container equalize at pressure \(p\)
Number of moles in container \(A\) has changed to \(n_{1}-x\)
i.e., \(\left(n_{1}-x\right)=\frac{p \cdot V_{1}}{R \cdot T_{1}}\)
\(\therefore x=n_{1}=\frac{p \cdot V_{1}}{R \cdot T_{1}}=\frac{\left(p_{1}-p\right) \cdot V_{1}}{R \cdot T_{1}} ...\)(i) 
Number of moles in container \(6\) has changed to \(n_{2}+x\)
therefore \(\left(n_{2}+x\right)=\frac{p_{2} \cdot V_{2}}{R \cdot T_{2}}\)
\(\therefore x=\frac{p \cdot V_{2}}{R \cdot T_{2}}-n_{2}=\frac{\left(p-p_{z}\right) V_{2}}{R \cdot T_{2}} \ldots . .\) (ii) 
Equating Eqs (i) and (ii), we get 
\(\frac{\left(p_{1}-p\right) \cdot V_{1}}{R \cdot T_{1}}=\frac{\left(p-p_{2}\right) \cdot V_{2}}{R \cdot T_{2}}\)
\(\Rightarrow\) \(\left(p_{1}-p\right)=\left(p-p_{2}\right) \cdot\left(\frac{V_{2}}{V_{1}}\right) \cdot\left(\frac{T_{1}}{T_{2}}\right)\) 
The pressure changes in the two containers are proportional 
\(\left(p_{1}-p\right)=\left(p-p_{2}\right) . K\) 
with \(K=\left(\frac{V_{2}}{V_{1}}\right) \cdot\left(\frac{T_{1}}{T_{2}}\right)\)
\(=4\left(\frac{300}{400}\right)=3\)
\(p=\frac{p_{1}+p_{2} \cdot K}{1+K}=\frac{5 \times 10^{5}+1 \times 10^{5}}{1+3}\)
\(=\frac{6 \times 10^{5}}{4}=1.5 \times 10^{5} Pa\)

Was this answer helpful?
0
0

Concepts Used:

Ideal Gas Equation

An ideal gas is a theoretical gas composed of a set of randomly-moving point particles that interact only through elastic collisions.

What is Ideal Gas Law?

The ideal gas law states that the product of the pressure and the volume of one gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.

PV=nRT

where,

P is the pressure

V is the volume

n is the amount of substance

R is the ideal gas constant

Ideal Gas Law Units

When we use the gas constant R = 8.31 J/K.mol, then we have to plug in the pressure P in the units of pascals Pa, volume in the units of m3 and the temperature T in the units of kelvin K.