To find \( \vec{AD} \), we use the relationship: \[ \vec{AD} = \vec{AB} + \vec{DB}. \] Given that \( \vec{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k} \) and \( \vec{DB} = 3\hat{i} - 6\hat{j} + 2\hat{k} \), we calculate \( \vec{AD} \): \[ \vec{AD} = (2\hat{i} - 4\hat{j} + 5\hat{k}) + (3\hat{i} - 6\hat{j} + 2\hat{k}). \]
Simplifying: \[ \vec{AD} = (2 + 3)\hat{i} + (-4 - 6)\hat{j} + (5 + 2)\hat{k} = 5\hat{i} - 10\hat{j} + 7\hat{k}. \]
The area of parallelogram ABCD is given by the magnitude of the cross product of vectors \( \vec{AB} \) and \( \vec{AD} \): \[ \text{Area} = |\vec{AB} \times \vec{AD}|. \]
The cross product of \( \vec{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k} \) and \( \vec{AD} = 5\hat{i} - 10\hat{j} + 7\hat{k} \) is computed as follows: \[ \vec{AB} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 5 & -10 & 7 \end{vmatrix}. \]
Expanding the determinant:
\[ \vec{AB} \times \vec{AD} = \hat{i} \begin{vmatrix} -4 & 5 \\ -10 & 7 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 5 \\ 5 & 7 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -4 \\ 5 & -10 \end{vmatrix}. \]
Calculating each 2x2 determinant: \[ \hat{i} = (-4)(7) - (5)(-10) = -28 + 50 = 22, \] \[ \hat{j} = (2)(7) - (5)(5) = 14 - 25 = -11, \] \[ \hat{k} = (2)(-10) - (-4)(5) = -20 + 20 = 0. \] Thus, \[ \vec{AB} \times \vec{AD} = 22\hat{i} + 11\hat{j} + 0\hat{k}. \]
The magnitude of the cross product is: \[ |\vec{AB} \times \vec{AD}| = \sqrt{22^2 + 11^2} = \sqrt{484 + 121} = \sqrt{605}. \]
Answer: The magnitude of the cross product is \( \sqrt{605} \), so the area of parallelogram ABCD is \( \sqrt{605} \). \bigskip
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.