In the given circuit, the rms value of current (\( I_{\text{rms}} \)) through the resistor \( R \) is:
In an AC circuit, the impedance \( Z \) is given by \( Z = \sqrt{R^2 + (X_L -X_C)^2} \), where \( R \) is the resistance, \( X_L \) is the inductive reactance, and \( X_C \) is the capacitive reactance. The rms current can be calculated using \( I_{\text{rms}} = \frac{V_{\text{rms}}}{Z} \).
Step 1: Understanding the Problem
We are given an AC circuit with a resistor \( R = 100\Omega \), inductive reactance \( X_L = 200\Omega \), and capacitive reactance \( X_C = 100\Omega \). The rms voltage \( V_{\text{rms}} = 200\sqrt{2}V \). We need to find the rms current through the resistor.
Step 2: Calculating the Impedance of the Circuit
The impedance (\( Z \)) of the circuit is given by: \[ Z = \sqrt{R^2 + (X_L -X_C)^2}. \]
Substituting the given values: \[ Z = \sqrt{100^2 + (200 -100)^2} = \sqrt{10000 + 10000} = \sqrt{20000} = 100\sqrt{2}\Omega. \]
Step 3: Calculating the rms Current
The rms current (\( I_{\text{rms}} \)) is given by: \[ I_{\text{rms}} = \frac{V_{\text{rms}}}{Z}. \]
Substituting the values: \[ I_{\text{rms}} = \frac{200\sqrt{2}}{100\sqrt{2}} = 2A. \]
Step 4: Matching with the Options
The calculated rms current is \(2A\), which corresponds to option (A). Final Answer: The rms value of current through the resistor is 2A.
Two batteries of emf's \(3V \& 6V\) and internal resistances 0.2 Ω \(\&\) 0.4 Ω are connected in parallel. This combination is connected to a 4 Ω resistor. Find:
(i) the equivalent emf of the combination
(ii) the equivalent internal resistance of the combination
(iii) the current drawn from the combination

What is the first law of Kirchhoff of the electrical circuit? Find out the potential difference between the ends of 2 \(\Omega\) resistor with the help of Kirchhoff's law. See the figure: