
(i) 
In ∆AEP and ∆CDP,
\(\angle\)AEP = \(\angle\)CDP (Each 90°)
\(\angle\)APE = \(\angle\)CPD (Vertically opposite angles)
Hence, by using AA similarity criterion,
∆AEP ∼ ∆CDP
(ii) 
In ∆ABD and ∆CBE,
\(\angle\)ADB = \(\angle\)CEB (Each 90°)
\(\angle\)ABD = \(\angle\)CBE (Common)
Hence, by using AA similarity criterion,
∆ABD ∼ ∆CBE
(iii) 
In ∆AEP and ∆ADB,
\(\angle\)AEP = \(\angle\)ADB (Each 90°)
\(\angle\)PAE = \(\angle\)DAB (Common)
Hence, by using the AA similarity criterion,
∆AEP ∼ ∆ADB
(iv) 
In ∆PDC and ∆BEC,
\(\angle\)PDC = \(\angle\)BEC (Each 90°)
\(\angle\)PCD = \(\angle\)BCE (Common angle)
Hence, by using the AA similarity criterion,
∆PDC ∼ ∆BEC
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।