To Prove: BC || QR
Proof:
In ∆ POQ, AB || PQ
∴\(\frac{OA}{AP}=\frac{OB}{BQ}\)............(i)

In ∆ POR, AC||PR
∴\(\frac{OA}{AP}=\frac{OC}{CR}\)...........(ii)
From (i) and (ii) we obtain,
\(\frac{OB}{BQ}=\frac{OC}{CR}\)
∴ BC || QR
(By the converse of the basic proportionality theorem)
Hence Proved

In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).