In the differential equation $\dfrac{dy}{dx} + \alpha x y = 0$, $\alpha$ is a positive constant. If $y=1.0$ at $x=0.0$, and $y=0.8$ at $x=1.0$, the value of $\alpha$ is (rounded off to three decimal places).
Step 1: Write the differential equation.
\[
\frac{dy}{dx} + \alpha x y = 0
\]
This is a first-order linear ODE.
Step 2: Rearrange.
\[
\frac{dy}{dx} = -\alpha x y
\]
Step 3: Separate variables.
\[
\frac{dy}{y} = -\alpha x dx
\]
Step 4: Integrate.
\[
\int \frac{1}{y} \, dy = -\alpha \int x \, dx
\]
\[
\ln y = -\frac{\alpha x^2}{2} + C
\]
Step 5: Exponential solution.
\[
y = C_1 \, e^{-\frac{\alpha x^2}{2}}
\]
Step 6: Apply initial condition at $x=0, y=1$.
\[
1 = C_1 e^0 \Rightarrow C_1 = 1
\]
So,
\[
y = e^{-\frac{\alpha x^2}{2}}
\]
Step 7: Apply condition at $x=1, y=0.8$.
\[
0.8 = e^{-\frac{\alpha (1)^2}{2}} \Rightarrow \ln(0.8) = -\frac{\alpha}{2}
\]
\[
\alpha = -2 \ln(0.8)
\]
Step 8: Compute numerical value.
\[
\ln(0.8) \approx -0.22314355
\]
\[
\alpha = -2 \times (-0.22314355) = 0.4462871 \approx 0.446
\]
\[
\boxed{0.446}
\]
Pick the CORRECT solution for the following differential equation:
\[ \frac{dy}{dx} = e^{x - y} \]
Let \( u(x, t) \) be the solution of the following initial-boundary value problem: \[ \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in (0, \pi), \quad t>0, \] with the boundary conditions: \[ u(0, t) = u(\pi, t) = 0, \quad u(x, 0) = \sin 4x \cos 3x. \] Then, for each \( t>0 \), the value of \( u\left( \frac{\pi}{4}, t \right) \) is
In the differential equation $\dfrac{dy}{dx} + \alpha x y = 0$, $\alpha$ is a positive constant. If $y=1.0$ at $x=0.0$, and $y=0.8$ at $x=1.0$, the value of $\alpha$ is (rounded off to three decimal places).
Consider a five-digit number PQRST that has distinct digits P, Q, R, S, and T, and satisfies the following conditions:
1. \( P<Q \)
2. \( S>P>T \)
3. \( R<T \)
If integers 1 through 5 are used to construct such a number, the value of P is:



