Question:

Let \( u(x, t) \) be the solution of the following initial-boundary value problem: \[ \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in (0, \pi), \quad t>0, \] with the boundary conditions: \[ u(0, t) = u(\pi, t) = 0, \quad u(x, 0) = \sin 4x \cos 3x. \] Then, for each \( t>0 \), the value of \( u\left( \frac{\pi}{4}, t \right) \) is

Show Hint

For heat equation problems, use separation of variables and apply the initial and boundary conditions to determine the eigenvalues and eigenfunctions. Use trigonometric identities to simplify the initial condition.
Updated On: Apr 9, 2025
  • \( \frac{e^{-49t}}{2\sqrt{2}} (e^{48t} - 1) \)
  • \( \frac{e^{-49t}}{2\sqrt{2}} (1 - e^{48t}) \)
  • \( \frac{e^{-49t}}{2\sqrt{2}} (1 + e^{48t}) \)
  • \( \frac{e^{-49t}}{4\sqrt{2}} (1 - e^{48t}) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Separation of Variables
Assume a solution of the form: \[ u(x, t) = X(x) T(t) \] Substitute into the heat equation \( u_t = u_{xx} \): \[ X(x) T'(t) = X''(x) T(t) \] Divide both sides: \[ \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda \] We obtain two ODEs:
  • \( X''(x) + \lambda X(x) = 0 \)
  • \( T'(t) + \lambda T(t) = 0 \)
Step 2: Solve the Spatial ODE
Boundary conditions: \( X(0) = X(\pi) = 0 \) ⇒ eigenfunctions: \[ X_n(x) = \sin(nx), \quad \lambda_n = n^2,\quad n \in \mathbb{N} \] Step 3: Solve the Time ODE
\[ T_n(t) = e^{-n^2 t} \] Step 4: General Solution
\[ u(x, t) = \sum_{n=1}^{\infty} b_n \sin(nx) e^{-n^2 t} \] Step 5: Apply Initial Condition
Given \( u(x, 0) = \sin(4x) \cos(3x) \), use identity: \[ \sin(A)\cos(B) = \frac{1}{2}[\sin(A+B) + \sin(A-B)] \] \[ u(x, 0) = \frac{1}{2}[\sin(7x) + \sin(x)] \Rightarrow b_7 = \frac{1}{2}, b_1 = \frac{1}{2} \] Step 6: Construct the Solution
\[ u(x, t) = \frac{1}{2} \sin(7x) e^{-49t} + \frac{1}{2} \sin(x) e^{-t} \] Step 7: Evaluate at \( x = \frac{\pi}{4} \)
\[ u\left( \frac{\pi}{4}, t \right) = \frac{1}{2} \sin\left(\frac{7\pi}{4}\right) e^{-49t} + \frac{1}{2} \sin\left(\frac{\pi}{4}\right) e^{-t} \] \[ = \frac{1}{2} \left(-\frac{1}{\sqrt{2}}\right) e^{-49t} + \frac{1}{2} \left(\frac{1}{\sqrt{2}}\right) e^{-t} = \frac{1}{2\sqrt{2}}(e^{-t} - e^{-49t}) \] \[ = \frac{e^{-49t}}{2\sqrt{2}}(e^{48t} - 1) \]
Final Answer:
\[ \boxed{A \quad \frac{e^{-49t}}{2\sqrt{2}} (e^{48t} - 1)} \]
Was this answer helpful?
0
0

Questions Asked in GATE MA exam

View More Questions