Step 1: Apply the two-wattmeter method.
The two-wattmeter method is used to measure power in a three-phase system.
Given:
\[
V_{RY} = 400 \angle 0^\circ, \quad V_{YB} = 400 \angle -120^\circ, \quad V_{BR} = 400 \angle -240^\circ.
\]
According to the given phase sequence, we construct the phasor diagram (\( R \to Y \to B \) phase sequence):
\[
V_{BR} = V_{L} \angle -240^\circ.
\]
\begin{center}
\begin{tikzpicture}
% Draw the origin
\coordinate (O) at (0,0);
% Draw vectors
\draw[->, thick] (O) -- (3,0) node[midway, above] {$V_{RY} = V_L \angle 0^\circ$};
\draw[->, thick] (O) -- (-1.5,-2.6) node[midway, left] {$V_{YB} = V_L \angle -120^\circ$};
\draw[->, thick] (O) -- (-1.5,2.6) node[midway, left] {$V_{BR} = V_L \angle -240^\circ$};
% Add angles
\node at (1,-0.5) {$120^\circ$};
\node at (-1.2,-1.2) {$120^\circ$};
\end{tikzpicture}
\end{center}
Step 1: Calculate voltages.
\[
V_{BR} = V_{BN} - V_{RN} = V_{BN} - V_{RY}.
\]
From the circuit diagram:
\[
I_1 = \frac{V_{RY}}{Z_1} = \frac{400 \angle -60^\circ}{50 \angle -90^\circ} = 8 \angle 30^\circ \, \text{Amp},
\]
\[
I_2 = \frac{V_{RY}}{Z_2} = \frac{400 \angle 0^\circ}{200 \angle -30^\circ} = 2 \angle 30^\circ \, \text{Amp}.
\]
The total current is:
\[
I_L = I_1 + I_2 = 8 \angle 30^\circ + 2 \angle 30^\circ = 10 \angle 30^\circ \, \text{Amp}.
\]
Step 2: Calculate wattmeter readings.
For Wattmeter \( W_1 \):
\[
W_1 = V_{RY} I_L \cos(\angle V_{RY} - \angle I_L).
\]
Substitute values:
\[
W_1 = 400 \times 10 \times \cos(-60^\circ - 30^\circ) = 400 \times 10 \times \cos(90^\circ).
\]
Simplify:
\[
W_1 = 400 \times 10 \times 0 = 0 \, \text{Watt}.
\]
For Wattmeter \( W_2 \):
\[
W_2 = V_{YB} I_2 \cos(\angle V_{YB} - \angle I_2).
\]
Substitute values:
\[
W_2 = 400 \times 2 \times \cos(-120^\circ - 30^\circ) = 400 \times 2 \times \cos(-150^\circ).
\]
Simplify:
\[
W_2 = 800 \cos(150^\circ) = -800 \cos(30^\circ).
\]
\[
W_2 = -800 \times \frac{\sqrt{3}}{2} = -692.82 \, \text{Watt}.
\]
Step 3: Difference between the wattmeter readings.
The magnitude of the difference is:
\[
|W_1 - W_2| = |0 - (-692.82)| = 692.82 \, \text{Watts}.
\]
Final Answer:
\[
|W_1 - W_2| = 692.82 \, \text{Watts}.
\]
Step 2: Perform calculations.
The readings of \( W_1 \) and \( W_2 \) are calculated, and the difference is found to be:
\[
\Delta W = 692 \, \text{W} \, \text{to} \, 693 \, \text{W}
\]