In the circuit shown, the identical transistors Q1 and Q2 are biased in the active region with \( \beta = 120 \). The Zener diode is in the breakdown region with \( V_Z = 5 \, V \) and \( I_Z = 25 \, mA \). If \( I_L = 12 \, mA \) and \( V_{EB1} = V_{EB2} = 0.7 \, V \), then the values of \( R_1 \) and \( R_2 \) (in \( k\Omega \), rounded off to one decimal place) are _________, respectively.
To solve for \( R_1 \) and \( R_2 \), we use the fact that the current through the Zener diode is \( I_Z = 25 \, mA \) and the collector current \( I_L = 12 \, mA \), which are both related to the transistor currents.
Step 1: Apply KVL for the collector loop:
The voltage across \( R_2 \) is: \[ V_{R2} = I_L R_2 \] From the circuit, we know: \[ V_{CC} = 20 \, V, \quad V_{EB1} = 0.7 \, V, \quad V_Z = 5 \, V \] By applying Kirchhoff's voltage law (KVL) and substituting the known voltages and current values, we can solve for \( R_2 \).
Step 2: Apply KVL for the base loop:
Similarly, for \( R_1 \), we can calculate using KVL. The base current \( I_B \) can be found from the relation \( I_C = \beta I_B \), and the voltage across \( R_1 \) is: \[ V_{R1} = I_B R_1 \] From this, we can calculate \( R_1 \). After solving these equations using the given values, we find: \[ R_1 = 0.6 \, k\Omega \quad {and} \quad R_2 = 0.4 \, k\Omega. \] Thus, the correct answer is (A): \( R_1 = 0.6 \, k\Omega \) and \( R_2 = 0.4 \, k\Omega \).
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
Two resistors are connected in a circuit loop of area 5 m\(^2\), as shown in the figure below. The circuit loop is placed on the \( x-y \) plane. When a time-varying magnetic flux, with flux-density \( B(t) = 0.5t \) (in Tesla), is applied along the positive \( z \)-axis, the magnitude of current \( I \) (in Amperes, rounded off to two decimal places) in the loop is (answer in Amperes).
A 50 \(\Omega\) lossless transmission line is terminated with a load \( Z_L = (50 - j75) \, \Omega.\) { If the average incident power on the line is 10 mW, then the average power delivered to the load
(in mW, rounded off to one decimal place) is} _________.
In the circuit shown below, the AND gate has a propagation delay of 1 ns. The edge-triggered flip-flops have a set-up time of 2 ns, a hold-time of 0 ns, and a clock-to-Q delay of 2 ns. The maximum clock frequency (in MHz, rounded off to the nearest integer) such that there are no setup violations is (answer in MHz).