Given:
- Collector current, \( I_C = 10 \) mA = \( 10 \times 10^{-3} \) A
- Percentage of electrons reaching the collector = 95% = 0.95
Step 1: Understand the currents in an npn transistor:
- Electrons emitted from the emitter current (\( I_E \)) split into two parts:
- \( I_C \): Electrons collected by the collector
- \( I_B \): Electrons recombining in the base (base current)
Step 2: Since 95% electrons reach collector, 5% recombine in the base:
\[
I_C = 0.95 I_E
\]
\[
I_B = 0.05 I_E
\]
Step 3: Express \( I_E \) in terms of \( I_C \):
\[
I_E = \frac{I_C}{0.95} = \frac{10 \times 10^{-3}}{0.95} \approx 10.526 \times 10^{-3} \, \text{A}
\]
Step 4: Calculate the base current \( I_B \):
\[
I_B = 0.05 \times I_E = 0.05 \times 10.526 \times 10^{-3} = 0.5263 \times 10^{-3} \, \text{A} = 0.5263 \, \text{mA}
\]
Step 5: Round to two decimal places:
\[
I_B \approx 0.53 \, \text{mA}
\]
Therefore, the base current is nearly:
\[
\boxed{0.53 \, \text{mA}}
\]