(a) Total Equivalent Resistance
Step 1: Calculate equivalent resistance of the left parallel branch:
\[
\frac{1}{R_1} = \frac{1}{10} + \frac{1}{40} = \frac{4 + 1}{40} = \frac{5}{40} = \frac{1}{8}
\Rightarrow R_1 = 8\,\Omega
\]
Step 2: Calculate equivalent resistance of the right parallel branch:
\[
\frac{1}{R_2} = \frac{1}{30} + \frac{1}{20} + \frac{1}{60}
= \frac{2 + 3 + 1}{60} = \frac{6}{60} = \frac{1}{10}
\Rightarrow R_2 = 10\,\Omega
\]
Step 3: Total equivalent resistance in series:
\[
R_{\text{total}} = R_1 + R_2 = 8 + 10 = 18\,\Omega
\]
(b) Total Current Using Ohm’s Law:
\[
I = \frac{V}{R} = \frac{12\,\text{V}}{18\,\Omega} = \frac{2}{3}\,\text{A} \approx 0.67\,\text{A}
\]