In an inductive circuit, the voltage \( V \) and the current \( I \) are related through the inductance \( L \) and the frequency of the alternating current. The voltage across an inductor is given by: \[ V_L = L \frac{dI}{dt} \]
For an AC circuit, the current and voltage can be expressed as: \[ I = I_0 \sin(\omega t) \] \[ V_L = L I_0 \omega \cos(\omega t) \] Since \( \cos(\omega t) = \sin\left(\omega t + \frac{\pi}{2}\right) \), the voltage leads the current by \( \frac{\pi}{2} \) radians in an inductor.
Thus, the correct answer is: \[ \text{(B) } \text{voltage leads the current by } \frac{\pi}{2} \]
Conductor wire ABCDE with each arm 10 cm in length is placed in magnetic field of $\frac{1}{\sqrt{2}}$ Tesla, perpendicular to its plane. When conductor is pulled towards right with constant velocity of $10 \mathrm{~cm} / \mathrm{s}$, induced emf between points A and E is _______ mV.}
Two point charges M and N having charges +q and -q respectively are placed at a distance apart. Force acting between them is F. If 30% of charge of N is transferred to M, then the force between the charges becomes:
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be: