(ax² + bx + c)(1 - 2x)²⁶,
The coefficients of \(x\), \(x^2\), and \(x^3\) are \(-56\), 0, and 0 respectively. Then the value of \( (a + b + c) \) is:
The given expression is:
(ax² + bx + c)(1 - 2x)^{26}.
Using the binomial expansion for \((1 - 2x)^{26}\), we have:
\((1 - 2x)^{26} = \sum_{k=0}^{26} \binom{26}{k} (-2x)^k.\)
Expanding this:
\((1 - 2x)^{26} = 1 - 52x + 1320x² - 20800x³ + \cdots.\)
Now, expand the product:
\((ax² + bx + c)(1 - 52x + 1320x² - 20800x³ + \cdots).\)
This gives:
\(ax²(1 - 52x + 1320x² - 20800x³ + \cdots) + bx(1 - 52x + 1320x² - 20800x³ + \cdots) + c(1 - 52x + 1320x² - 20800x³ + \cdots).\)
Expanding each term:
\(= a(x² - 52x³ + 1320x⁴ - 20800x⁵ + \cdots) + b(x - 52x² + 1320x³ - 20800x⁴ + \cdots) + c(1 - 52x + 1320x² - 20800x³ + \cdots).\)
We are given that the coefficients of \(x\), \(x²\), and \(x³\) are -56, 0, and 0, respectively. Now, extract the terms for \(x\), \(x²\), and \(x³\) from the expanded product: - Coefficient of \(x\) from the product of \(bx\) and \(1\) term: \[ b \cdot 1 = b. \] So, \(b = -56\). - Coefficient of \(x^2\) from the product of \(ax²\) and \(1\) term, and \(bx\) and \(-52x\): \[ a \cdot 1 + b \cdot (-52) = 0. \] Substituting \(b = -56\): \[ a - 56 \cdot 52 = 0. \] \[ a - 2912 = 0 \quad \Rightarrow \quad a = 2912. \] - Coefficient of \(x^3\) from the product of \(ax²\) and \(-52x\), \(bx\) and \(1320x²\), and \(c\) and \(-52x\): \[ a(-52) + b(1320) + c(-52) = 0. \] Substituting \(a = 2912\) and \(b = -56\): \[ -2912 \cdot 52 + (-56 \cdot 1320) - 52c = 0. \] After simplifying the equation, solve for \(c\).
After finding \(a\), \(b\), and \(c\), sum the values: \[ a + b + c. \] Substituting the values: \[ 2912 - 56 + c. \] Solve for \(c\) and find the final result.
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
Given below are two statements:
Statement I: All the pairs of molecules \((\mathrm{PbO}, \mathrm{PbO_2}); (\mathrm{SnO}, \mathrm{SnO_2})\) and \((\mathrm{GeO}, \mathrm{GeO_2})\) contain amphoteric oxides.
Statement II: \(\mathrm{AlCl_3}, \mathrm{BH_3}, \mathrm{BeH_2}\) and \(\mathrm{NO_2}\) all have incomplete octet.
In the light of the above statements, choose the correct option.

