In the \(^{1}\)H NMR spectrum, multiplicity of the signal (bold and underlined H atom) in the following species is
(I) \([\mathbf{H}\mathrm{Ni(OPEt_3)_4}]^{+}\)v
(II) \(\mathrm{Ph_2Si(Me)\underline{\mathbf{H}}}\)
(III) \(\mathrm{PH_3}\)
(IV) \((\mathrm{Cp^*})_2\mathrm{Zr}\underline{\mathbf{H}}_2\) (Cp\(^*\)=pentamethylcyclopentadienyl)
Step 1: Complex \([\mathrm{HNi(OPEt_3)_4}]^{+}\).
The hydride couples to four equivalent \(^{31}\)P nuclei (\(I=\tfrac12\)). Thus \(n=4 \Rightarrow n{+}1=5\) lines: pentet.
Step 2: \(\mathrm{Ph_2Si(Me)H}\).
The Si–H proton is three bonds from the three equivalent \(\mathrm{Me}\) protons and shows \({}^{3}J_{H\text{–}H}\) coupling, giving a quartet. (Coupling to \(^{29}\)Si gives only weak satellite doublets because \(^{29}\)Si is 4.7% abundant.)
Step 3: \(\mathrm{PH_3}\).
Each H couples to one \(^{31}\)P nucleus (\(I=\tfrac12\)), giving a doublet. (H–H coupling is not observed among equivalent protons.)
Step 4: \((\mathrm{Cp^*})_2\mathrm{ZrH_2\).}
The two Zr–H hydrides are equivalent; \emph{equivalent} protons do not split each other, hence the hydride resonance is a singlet.
\[ \boxed{\text{I pentet, II quartet, III doublet, IV singlet } \Rightarrow \text{ option (A).}} \]
\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.