In a simple harmonic oscillator, the total mechanical energy (T.E.) is given by:
\[ T.E. = \frac{1}{2}kA^2, \] where \( k \) is the spring constant and \( A \) is the amplitude of oscillation.
- Since the amplitude \( A \) remains the same, the total mechanical energy (T.E.) will also remain the same, as it depends only on \( k \) and \( A \), not on the mass \( m \) of the oscillating particle.
Thus, even if the mass of \( P \) is doubled, the total mechanical energy \( E \) will remain unchanged.
Answer: E
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: