
In a simple harmonic oscillator, the total mechanical energy (T.E.) is given by:
\[ T.E. = \frac{1}{2}kA^2, \] where \( k \) is the spring constant and \( A \) is the amplitude of oscillation.
- Since the amplitude \( A \) remains the same, the total mechanical energy (T.E.) will also remain the same, as it depends only on \( k \) and \( A \), not on the mass \( m \) of the oscillating particle.
Thus, even if the mass of \( P \) is doubled, the total mechanical energy \( E \) will remain unchanged.
Answer: E
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?


In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: