In a simple harmonic oscillator, the total mechanical energy (T.E.) is given by:
\[ T.E. = \frac{1}{2}kA^2, \] where \( k \) is the spring constant and \( A \) is the amplitude of oscillation.
- Since the amplitude \( A \) remains the same, the total mechanical energy (T.E.) will also remain the same, as it depends only on \( k \) and \( A \), not on the mass \( m \) of the oscillating particle.
Thus, even if the mass of \( P \) is doubled, the total mechanical energy \( E \) will remain unchanged.
Answer: E
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: