
In a simple harmonic oscillator, the total mechanical energy (T.E.) is given by:
\[ T.E. = \frac{1}{2}kA^2, \] where \( k \) is the spring constant and \( A \) is the amplitude of oscillation.
- Since the amplitude \( A \) remains the same, the total mechanical energy (T.E.) will also remain the same, as it depends only on \( k \) and \( A \), not on the mass \( m \) of the oscillating particle.
Thus, even if the mass of \( P \) is doubled, the total mechanical energy \( E \) will remain unchanged.
Answer: E
A particle is subjected to simple harmonic motions as: $ x_1 = \sqrt{7} \sin 5t \, \text{cm} $ $ x_2 = 2 \sqrt{7} \sin \left( 5t + \frac{\pi}{3} \right) \, \text{cm} $ where $ x $ is displacement and $ t $ is time in seconds. The maximum acceleration of the particle is $ x \times 10^{-2} \, \text{m/s}^2 $. The value of $ x $ is:
Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
