In photoelectric effect, the stopping potential \( V_0 \) vs frequency \( \nu \) curve is plotted. \( h \) is the Planck's constant and \( \phi_0 \) is the work function of metal.
(A) \( V_0 \) vs \( \nu \) is linear.
(B) The slope of \( V_0 \) vs \( \nu \) curve is \( \frac{\phi_0}{h} \).
(C) \( h \) constant is related to the slope of \( V_0 \) vs \( \nu \) line.
(D) The value of electric charge of electron is not required to determine \( h \) using the \( V_0 \) vs \( \nu \) curve.
(E) The work function can be estimated without knowing the value of \( h \). \text{Choose the correct answer from the options given below:}
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to