In photoelectric effect, the stopping potential \( V_0 \) vs frequency \( \nu \) curve is plotted. \( h \) is the Planck's constant and \( \phi_0 \) is the work function of metal.
(A) \( V_0 \) vs \( \nu \) is linear.
(B) The slope of \( V_0 \) vs \( \nu \) curve is \( \frac{\phi_0}{h} \).
(C) \( h \) constant is related to the slope of \( V_0 \) vs \( \nu \) line.
(D) The value of electric charge of electron is not required to determine \( h \) using the \( V_0 \) vs \( \nu \) curve.
(E) The work function can be estimated without knowing the value of \( h \). \text{Choose the correct answer from the options given below:}
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below:
$\text{The fractional compression } \left( \frac{\Delta V}{V} \right) \text{ of water at the depth of } 2.5 \, \text{km below the sea level is } \_\_\_\_\_\_\_\_\_\_ \%. \text{ Given, the Bulk modulus of water } = 2 \times 10^9 \, \text{N m}^{-2}, \text{ density of water } = 10^3 \, \text{kg m}^{-3}, \text{ acceleration due to gravity } g = 10 \, \text{m s}^{-2}.$
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below: