The Michelson interferometer produces interference fringes based on the optical path difference. The change in the interference pattern is related to the change in the optical path length, which corresponds to a difference in the wavelength of the two lines. The formula for the change in wavelength is:
\[\Delta\lambda = \frac{2 \Delta x}{m}\]
where \(\Delta x = 0.289 \, \text{mm}\) is the distance traveled by the mirror and \(m\) is the fringe order. Based on the given values, we find \(\Delta\lambda = 12 \, \text{\AA}\).
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below: