Step 1: Find the differential equation of the given family
Differentiating both sides with respect to $x$: $$\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0$$
$$x^{-1/3} + y^{-1/3}\frac{dy}{dx} = 0$$
$$y^{-1/3}\frac{dy}{dx} = -x^{-1/3}$$
$$\frac{dy}{dx} = -\frac{x^{-1/3}}{y^{-1/3}} = -\frac{y^{1/3}}{x^{1/3}} = -\left(\frac{y}{x}\right)^{1/3}$$
Step 2: Find the differential equation of orthogonal trajectories
For orthogonal trajectories, we replace $\frac{dy}{dx}$ with $-\frac{dx}{dy}$ (or equivalently, $\frac{dy}{dx}$ with $-\frac{1}{dy/dx}$):
$$\frac{dy}{dx} = -\frac{1}{-\left(\frac{y}{x}\right)^{1/3}} = \left(\frac{y}{x}\right)^{-1/3} = \left(\frac{x}{y}\right)^{1/3}$$
Step 3: Solve the differential equation
$$\frac{dy}{dx} = \left(\frac{x}{y}\right)^{1/3}$$
$$y^{1/3}dy = x^{1/3}dx$$
Integrating both sides: $$\int y^{1/3}dy = \int x^{1/3}dx$$
$$\frac{y^{4/3}}{4/3} = \frac{x^{4/3}}{4/3} + C_1$$
$$\frac{3}{4}y^{4/3} = \frac{3}{4}x^{4/3} + C_1$$
$$y^{4/3} = x^{4/3} + C$$
where $C = \frac{4C_1}{3}$
This can be rewritten as: $$x^{4/3} - y^{4/3} = -C$$
Or equivalently (letting $c^{4/3} = -C$): $$x^{4/3} - y^{4/3} = c^{4/3}$$
Answer: (B)