Step 1: Calculate the pressure of dry nitrogen gas.
$$P_{dry \, N_2} = P_{total} - \text{Aqueous tension} = 715 \, \text{mm Hg} - 15 \, \text{mm Hg} = 700 \, \text{mm Hg}$$
Step 2: Convert the volume of \( N_2 \) to STP.
Using the combined gas law:
$$V_{STP} = \frac{P_{dry \, N_2} \times V_{measured} \times T_{STP}}{P_{STP} \times T_{measured}} = \frac{700 \, \text{mm Hg} \times 50 \, \text{mL} \times 273 \, \text{K}}{760 \, \text{mm Hg} \times 300 \, \text{K}} \approx 41.91 \, \text{mL}$$
Step 3: Calculate the mass of nitrogen gas.
Using the molar volume of \( N_2 \) at STP (22400 mL/mol):
$$\text{Moles of } N_2 = \frac{41.91 \, \text{mL}}{22400 \, \text{mL/mol}} \approx 0.001871 \, \text{mol}$$
$$\text{Mass of } N_2 = \text{moles} \times \text{molar mass} = 0.001871 \, \text{mol} \times 28 \, \text{g/mol} \approx 0.05239 \, \text{g} = 52.39 \, \text{mg}$$
Step 4: Calculate the percentage composition of nitrogen.
$$\text{Percentage of Nitrogen} = \frac{\text{Mass of } N_2}{\text{Mass of organic compound}} \times 100 = \frac{52.39 \, \text{mg}}{292 \, \text{mg}} \times 100 \approx 17.94 %$$
Rounding to the nearest integer, the percentage of nitrogen is 18%.