Step 1: Understanding the Concept:
A cyclic quadrilateral is a quadrilateral whose vertices all lie on a single circle. A key property of cyclic quadrilaterals is related to its opposite angles.
Step 2: Key Formula or Approach:
The theorem of cyclic quadrilateral states that the sum of opposite angles of a cyclic quadrilateral is 180\(^\circ\) (supplementary).
\[ m\angle A + m\angle C = 180^\circ \]
\[ m\angle B + m\angle D = 180^\circ \]
Step 3: Detailed Explanation:
Given:
\[\begin{array}{rl} \bullet & \text{ABCD is a cyclic quadrilateral.} \\ \bullet & \text{\(m\angle A = 100^\circ\).} \\ \end{array}\]
Since ABCD is a cyclic quadrilateral, its opposite angles are supplementary.
Therefore, the sum of \(\angle A\) and its opposite angle \(\angle C\) is 180\(^\circ\).
\[ m\angle A + m\angle C = 180^\circ \]
Substitute the given value of \(m\angle A\):
\[ 100^\circ + m\angle C = 180^\circ \]
\[ m\angle C = 180^\circ - 100^\circ \]
\[ m\angle C = 80^\circ \]
Step 4: Final Answer:
The measure of \(\angle C\) is 80\(^\circ\).
In the following figure chord MN and chord RS intersect at point D. If RD = 15, DS = 4, MD = 8, find DN by completing the following activity:
Activity :
\(\therefore\) MD \(\times\) DN = \(\boxed{\phantom{SD}}\) \(\times\) DS \(\dots\) (Theorem of internal division of chords)
\(\therefore\) \(\boxed{\phantom{8}}\) \(\times\) DN = 15 \(\times\) 4
\(\therefore\) DN = \(\frac{\boxed{\phantom{60}}}{8}\)
\(\therefore\) DN = \(\boxed{\phantom{7.5}}\)
In the following figure, circle with centre D touches the sides of \(\angle\)ACB at A and B. If \(\angle\)ACB = 52\(^\circ\), find measure of \(\angle\)ADB.
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :