We use the identity \(\cos 2\theta = 1 - 2\sin^2\theta\).
So, \(\cos 2A = 1 - 2\sin^2 A\) and \(\cos 2B = 1 - 2\sin^2 B\).
The expression is \( E = \frac{1 - 2\sin^2 A}{a^2} - \frac{1 - 2\sin^2 B}{b^2} \).
\( E = \frac{1}{a^2} - \frac{2\sin^2 A}{a^2} - \frac{1}{b^2} + \frac{2\sin^2 B}{b^2} \).
By the Sine Rule in \(\triangle ABC\), we have \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R\), where R is the circumradius.
So, \(\sin A = \frac{a}{2R}\) and \(\sin B = \frac{b}{2R}\).
Substitute these into the expression for E:
\(\frac{2\sin^2 A}{a^2} = \frac{2 (a/(2R))^2}{a^2} = \frac{2 (a^2/(4R^2))}{a^2} = \frac{2a^2}{4R^2 a^2} = \frac{2}{4R^2} = \frac{1}{2R^2}\).
Similarly, \(\frac{2\sin^2 B}{b^2} = \frac{2 (b/(2R))^2}{b^2} = \frac{2 (b^2/(4R^2))}{b^2} = \frac{2b^2}{4R^2 b^2} = \frac{2}{4R^2} = \frac{1}{2R^2}\).
So, the expression becomes:
\( E = \frac{1}{a^2} - \frac{1}{2R^2} - \frac{1}{b^2} + \frac{1}{2R^2} \)
\( E = \frac{1}{a^2} - \frac{1}{b^2} \).
This matches option (b).
\[ \boxed{\frac{1}{a^2} - \frac{1}{b^2}} \]