In an octagon ABCDEFGH of equal side, what is the sum of $\vec{AB} + \vec{AC} + \vec{AD} + \vec{AE} + \vec{AF} + \vec{AG} + \vec{AH}$, if $\vec{AO} = 2i + 3j - 4k$?
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
