In an isosceles triangle ABC, with AB = AC, the bisectors of ∠ B and ∠ C intersect each other at O. Join A to O. Show that :
(i) OB = OC
(ii) AO bisects ∠ A
(i) It is given that in triangle ABC, AB = AC
∴ ∠ACB = ∠ABC (Angles opposite to equal sides of a triangle are equal)
∴\(\frac{1}{2}\) ∠ACB= \(\frac{1}{2}\) ∠ABC
∴ ∠OCB =∠OBC
∴ OB = OC (Sides opposite to equal angles of a triangle are also equal)
(ii) In ∆OAB and ∆OAC,
AO =AO (Common)
AB = AC (Given)
OB = OC (Proved above)
Therefore, ∆OAB ∆OAC (By SSS congruence rule)
∠BAO = ∠CAO (CPCT)
∴ AO bisects A.
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?