Calculate the Secondary Voltage Using the Turns Ratio: The turns ratio for a transformer is given by:
\(\frac{\epsilon_1}{\epsilon_2} = \frac{N_1}{N_2}\)
Substitute \(N_1 = 100\), \(N_2 = 10\), and \(\epsilon_1 = 220 \, V\):
\(\epsilon_2 = \frac{N_2}{N_1} \times \epsilon_1 = \frac{10}{100} \times 220 = 22 \, V\)
Determine the Equivalent Resistance of the Load: The load consists of two resistances, \(15 \, \Omega\) and \(7 \, \Omega\), connected in series:
\(R_{eq} = 15 + 7 = 22 \, \Omega\)
Calculate the Current in the Secondary Circuit: Using Ohm’s law for the secondary circuit:
\(I = \frac{\epsilon_2}{R_{eq}} = \frac{22 \, V}{22 \, \Omega} = 1 \, A\)
Calculate the Output Voltage Across the 7 \( \Omega \) Resistor: The output voltage \(V_0\) across the \(7 \, \Omega\) resistor is:
\(V_0 = I \times 7 = 1 \, A \times 7 \, \Omega = 7 \, V\).
A wire of resistance $ R $ is bent into a triangular pyramid as shown in the figure, with each segment having the same length. The resistance between points $ A $ and $ B $ is $ \frac{R}{n} $. The value of $ n $ is:
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion:
Resistance is the measure of opposition applied by any object to the flow of electric current. A resistor is an electronic constituent that is used in the circuit with the purpose of offering that specific amount of resistance.
R=V/I
In this case,
v = Voltage across its ends
I = Current flowing through it
All materials resist current flow to some degree. They fall into one of two broad categories:
Resistance measurements are normally taken to indicate the condition of a component or a circuit.