Step 1: Humidity ratio at state 1.
At 20$^\circ$C: $p_{sat} = 2.3392 \, kPa$.
Relative humidity = 0.3.
\[
p_v = 0.3 \times 2.3392 = 0.702 \, kPa
\]
\[
\omega_1 = 0.622 \frac{p_v}{p_{atm} - p_v} = 0.622 \frac{0.702}{100 - 0.702} = 0.00438 \, kg/kg_{da}
\]
Step 2: Humidity ratio at state 2.
At 25$^\circ$C: $p_{sat} = 3.1698 \, kPa$.
Relative humidity = 0.6.
\[
p_v = 0.6 \times 3.1698 = 1.902 \, kPa
\]
\[
\omega_2 = 0.622 \frac{1.902}{100 - 1.902} = 0.01142 \, kg/kg_{da}
\]
Step 3: Mass flow rate of dry air.
Volume flow = 30 m$^3$/min = 0.5 m$^3$/s.
At 20$^\circ$C (293 K):
\[
\dot{m}_{da} = \frac{p V}{RT} = \frac{100 \times 0.5}{0.287 \times 293} = 0.598 \, kg/s = 35.9 \, kg/min
\]
Step 4: Water added.
\[
\dot{m}_w = \dot{m}_{da} (\omega_2 - \omega_1) = 35.9 (0.01142 - 0.00438) = 0.451 \, kg/min
\]
Final Answer:
\[
\boxed{0.451 \, kg/min}
\]
% Quicktip