The formula for the average power dissipated in an AC circuit with sinusoidal voltage and current is:
\(P_{\text{avg}} = V_{\text{rms}} \cdot I_{\text{rms}} \cdot \cos \phi\) where \( \phi \) is the phase difference between the voltage and the current.
Step 1. Convert voltage and current to RMS values:
- Given \( V = 100\sin(100t) \), the peak voltage \( V_0 = 100 \, \text{V} \).
\(V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{100}{\sqrt{2}} = 50\sqrt{2} \, \text{V}\)
- Given \( I = 100\sin(100t + \frac{\pi}{3}) \), the peak current \( I_0 = 100 \, \text{mA} = 0.1 \, \text{A} \).
\(I_{\text{rms}} = \frac{I_0}{\sqrt{2}} = \frac{0.1}{\sqrt{2}} = 0.05\sqrt{2} \, \text{A}\)
Step 2. Determine the phase difference:
- The phase difference \( \phi = \frac{\pi}{3} \).
Step 3. Calculate the average power:
\(P_{\text{avg}} = V_{\text{rms}} \cdot I_{\text{rms}} \cdot \cos \phi\)
Substituting the values:
\(P_{\text{avg}} = (50\sqrt{2}) \cdot (0.05\sqrt{2}) \cdot \cos \frac{\pi}{3}\)
\(P_{\text{avg}} = 50 \cdot 0.05 \cdot \cos \frac{\pi}{3}\)
\(P_{\text{avg}} = 2.5 \, \text{W}\)
The Correct Answer is: 2.5 W
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: