Question:

In an a.c. circuit, voltage and current are given by:\[V = 100 \sin (100 \, t) \, \text{V}\]and\[I = 100 \sin \left(100 \, t + \frac{\pi}{3}\right) \, \text{mA}\]respectively. The average power dissipated in one cycle is:

Updated On: Nov 15, 2024
  • 5 W
  • 10 W
  • 2.5 W
  • 25 W
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The formula for the average power dissipated in an AC circuit with sinusoidal voltage and current is:  
\(P_{\text{avg}} = V_{\text{rms}} \cdot I_{\text{rms}} \cdot \cos \phi\) where \( \phi \) is the phase difference between the voltage and the current.

Step 1. Convert voltage and current to RMS values:  
  - Given \( V = 100\sin(100t) \), the peak voltage \( V_0 = 100 \, \text{V} \).  
    
    \(V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{100}{\sqrt{2}} = 50\sqrt{2} \, \text{V}\)
    
  - Given \( I = 100\sin(100t + \frac{\pi}{3}) \), the peak current \( I_0 = 100 \, \text{mA} = 0.1 \, \text{A} \).  
 
    \(I_{\text{rms}} = \frac{I_0}{\sqrt{2}} = \frac{0.1}{\sqrt{2}} = 0.05\sqrt{2} \, \text{A}\)
Step 2. Determine the phase difference:  
  - The phase difference \( \phi = \frac{\pi}{3} \).

Step 3. Calculate the average power:  

  \(P_{\text{avg}} = V_{\text{rms}} \cdot I_{\text{rms}} \cdot \cos \phi\)
 
  Substituting the values:  
  
  \(P_{\text{avg}} = (50\sqrt{2}) \cdot (0.05\sqrt{2}) \cdot \cos \frac{\pi}{3}\)
 
  \(P_{\text{avg}} = 50 \cdot 0.05 \cdot \cos \frac{\pi}{3}\)

  \(P_{\text{avg}} = 2.5 \, \text{W}\)
The Correct Answer is: 2.5 W

Was this answer helpful?
0
0