Young's Double-Slit Experiment
Given
Slit separation, \( d = 0.30 \, \text{mm} = 0.30 \times 10^{-3} \, \text{m} \)
Distance to the screen, \( D = 1.5 \, \text{m} \)
Wavelength of light, \( \lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m} \)
We are interested in the 4th dark fringe.
Position of Dark Fringes
The position of the \( n \)-th dark fringe is given by:
\[
y_n = \left( n - \frac{1}{2} \right) \frac{\lambda D}{d}
\]
For the 4th Dark Fringe (\( n = 4 \))
\[
y_4 = \left( 4 - \frac{1}{2} \right) \frac{\lambda D}{d} = \left( 3.5 \right) \frac{\lambda D}{d}
\]
Substitute the Given Values
\[
y_4 = 3.5 \times \frac{600 \times 10^{-9} \times 1.5}{0.30 \times 10^{-3}}
\]
Calculate the Distance
\[
y_4 = 3.5 \times \frac{900 \times 10^{-9}}{0.30 \times 10^{-3}} = 3.5 \times 3 \times 10^{-3} = 10.5 \times 10^{-3} \, \text{m}
\]
\[
y_4 = 10.5 \, \text{mm}
\]
Final Answer
The distance between the central bright fringe and the 4th dark fringe is:
\[
\boxed{10.5 \, \text{mm}}
\]