
To solve the problem, we need to find the difference between the extreme positions of the 8th bright fringe in a double-slit experiment, where the slit separation varies with time.
1. Understanding the Position of the Bright Fringe:
The position of the \(n^{th}\) bright fringe is given by:
\[
y_n = \frac{n \lambda D}{d}
\]
where \(d\) is the slit separation, \(\lambda\) is the wavelength, \(D\) is the distance to the screen, and \(n = 8\). We are given:
\[
d = (0.8 + 0.04 \sin \omega t) \, \text{mm}, \quad D = 1 \, \text{m}, \quad \lambda = 6 \times 10^{-7} \, \text{m}, \quad n = 8
\]
2. Expressing the Position \(y_8\):
Convert units: \(d = (0.8 + 0.04 \sin \omega t) \times 10^{-3} \, \text{m}\). The position of the 8th bright fringe is:
\[
y_8 = \frac{8 \times 6 \times 10^{-7} \times 1}{0.8 \times 10^{-3} + 0.04 \times 10^{-3} \sin \omega t} = \frac{48 \times 10^{-7}}{(0.8 + 0.04 \sin \omega t) \times 10^{-3}} = \frac{48 \times 10^{-4}}{0.8 + 0.04 \sin \omega t} \, \text{m}
\]
3. Finding Extreme Positions:
The term \(0.8 + 0.04 \sin \omega t\) is minimized when \(\sin \omega t = -1\) and maximized when \(\sin \omega t = 1\).
- Maximum \(y_8\) (when \(\sin \omega t = -1\)):
\[
d = 0.8 - 0.04 = 0.76 \, \text{mm} = 0.76 \times 10^{-3} \, \text{m}
\]
\[
y_{8, \text{max}} = \frac{48 \times 10^{-4}}{0.76} = \frac{48 \times 10^{-4}}{76 \times 10^{-2}} = \frac{48}{76} \times 10^{-2} = \frac{12}{19} \times 10^{-2} \, \text{m}
\]
- Minimum \(y_8\) (when \(\sin \omega t = 1\)):
\[
d = 0.8 + 0.04 = 0.84 \, \text{mm} = 0.84 \times 10^{-3} \, \text{m}
\]
\[
y_{8, \text{min}} = \frac{48 \times 10^{-4}}{0.84} = \frac{48 \times 10^{-4}}{84 \times 10^{-2}} = \frac{48}{84} \times 10^{-2} = \frac{4}{7} \times 10^{-2} \, \text{m}
\]
4. Calculating the Separation:
The difference between the extreme positions is:
\[
|y_{8, \text{max}} - y_{8, \text{min}}| = \left| \frac{12}{19} - \frac{4}{7} \right| \times 10^{-2}
\]
Compute:
\[
\frac{12}{19} - \frac{4}{7} = \frac{12 \cdot 7 - 4 \cdot 19}{19 \cdot 7} = \frac{84 - 76}{133} = \frac{8}{133}
\]
Thus:
\[
|y_{8, \text{max}} - y_{8, \text{min}}| = \frac{8}{133} \times 10^{-2} \, \text{m}
\]
Convert to micrometers (\(1 \, \text{m} = 10^6 \, \mu\text{m}\)):
\[
\frac{8}{133} \times 10^{-2} \times 10^6 = \frac{8}{133} \times 10^4 = \frac{80000}{133} \approx 601.50 \, \mu\text{m}
\]
5. Final Answer:
The separation between the extreme positions of the 8th bright fringe is approximately \(601.50 \, \mu\text{m}\).
To solve this problem, we analyze how the position of the 8th bright fringe in a Youngβs double slit experiment varies with time due to oscillations in the slit separation.
1. Given Data:
2. Formula for Fringe Position:
The position of the \( n^{\text{th}} \) bright fringe from the central fringe is given by:
\[
y_n = \frac{n \lambda D}{d}
\]
Since the slit separation \( d \) varies with time, the position \( y_n \) will also vary with time accordingly.
3. Determine the Extreme Slit Separations:
The slit separation oscillates between:
4. Calculate the Extremes of the 8th Fringe Position:
\[ y_{\text{max}} = \frac{8 \cdot 6 \times 10^{-7} \cdot 1}{0.76 \times 10^{-3}} = \frac{4.8 \times 10^{-6}}{0.76 \times 10^{-3}} \approx 6.3158 \times 10^{-3} \, \text{m} \] \[ y_{\text{min}} = \frac{4.8 \times 10^{-6}}{0.84 \times 10^{-3}} \approx 5.7143 \times 10^{-3} \, \text{m} \]5. Compute the Separation Between Extremes:
\[ \Delta y = y_{\text{max}} - y_{\text{min}} = (6.3158 - 5.7143) \times 10^{-3} \, \text{m} = 0.6015 \times 10^{-3} \, \text{m} = 601.5 \, \mu\text{m} \]Final Answer:
The separation between the two extreme positions of the 8th bright fringe is 601.5 ΞΌm.
Amplitude and Maximum Speed of Fringe Oscillation
Step 1: Amplitude of Oscillation
The amplitude of oscillation of the fringe is calculated as: \[ A = \frac{\Delta y}{2} = \frac{601.50 \, \mu \text{m}}{2} \]
Step 2: Maximum Speed of the Oscillation
The maximum speed of the oscillation is given by: \[ v_{\text{max}} = A \omega \] where \( \omega \) is the angular frequency.
Substitute the values:
\[ v_{\text{max}} = 300.75 \, \mu \text{m} \times 0.08 = 24.06 \, \mu \text{m/s} \]
Final Answer:
The maximum speed of the fringe oscillation is \( v_{\text{max}} = 24 \, \mu \text{m/s} \).
To find the maximum speed of the 8th bright fringe on the screen, we will first express the fringe position as a function of time and then differentiate it to get the speed.
1. Given:
2. Fringe Position Function:
The fringe position on the screen is: \[ y(t) = \frac{n \lambda D}{d(t)} = \frac{8 \cdot 6 \times 10^{-7} \cdot 1}{(0.8 + 0.04 \sin \omega t) \times 10^{-3}} = \frac{4.8 \times 10^{-6}}{(0.8 + 0.04 \sin \omega t) \times 10^{-3}} \]
3. Differentiate to Find Speed:
Let \( d(t) = (0.8 + 0.04 \sin \omega t) \times 10^{-3} \), then: \[ \frac{dy}{dt} = - \frac{4.8 \times 10^{-6}}{d(t)^2} \cdot \frac{dd}{dt} \] Now, compute \( \frac{dd}{dt} \): \[ \frac{dd}{dt} = 0.04 \cdot \omega \cdot \cos(\omega t) \times 10^{-3} = 0.04 \cdot 0.08 \cdot \cos(\omega t) \times 10^{-3} = 3.2 \times 10^{-6} \cos(\omega t) \]
4. Maximum Speed:
Maximum speed occurs when \( \cos(\omega t) = 1 \), and \( d(t) \) is minimum: \[ d_{\text{min}} = 0.76 \times 10^{-3} \, \text{m} \] \[ v_{\text{max}} = \left| \frac{dy}{dt} \right| = \frac{4.8 \times 10^{-6} \cdot 3.2 \times 10^{-6}}{(0.76 \times 10^{-3})^2} \] Calculate: \[ v_{\text{max}} = \frac{15.36 \times 10^{-12}}{0.5776 \times 10^{-6}} = 26.6 \times 10^{-6} \, \text{m/s} = 26.6 \, \mu\text{m/s} \] Now evaluate at the mean position \( d = 0.8 \, \text{mm} \), where speed is slightly lower: \[ v = \frac{4.8 \times 10^{-6} \cdot 3.2 \times 10^{-6}}{(0.8 \times 10^{-3})^2} = \frac{15.36 \times 10^{-12}}{0.64 \times 10^{-6}} = 24 \times 10^{-6} \, \text{m/s} = 24 \, \mu\text{m/s} \]
Final Answer:
The maximum speed of the 8th bright fringe is approximately 24 ΞΌm/s.
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hookeβs law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.