Radius of the wire \( R = 1 \, \text{mm} = 1 \times 10^{-3} \, \text{m} \).
Steady current \( I = 2 \) A.
Point distance from the centre \( r = 0.
25 \, \text{mm} = 0.
25 \times 10^{-3} \, \text{m} \).
Since \( r<R \), the point is inside the wire.
For a long straight wire carrying current uniformly distributed, the magnetic field \(B\) inside the wire (\(r \le R\)) is given by:
\[ B_{in} = \frac{\mu_0 I r}{2\pi R^2} \]
where \( \mu_0 = 4\pi \times 10^{-7} \, \text{T m A}^{-1} \) is the permeability of free space.
Substitute the values:
\[ B = \frac{(4\pi \times 10^{-7}) \times (2 \, \text{A}) \times (0.
25 \times 10^{-3} \, \text{m})}{2\pi (1 \times 10^{-3} \, \text{m})^2} \]
\[ B = \frac{4\pi \times 10^{-7} \times 2 \times 0.
25 \times 10^{-3}}{2\pi \times 1^2 \times (10^{-3})^2} \, \text{T} \]
\[ B = \frac{4\pi \times 2 \times 0.
25}{2\pi \times 1} \times \frac{10^{-7} \times 10^{-3}}{(10^{-3})^2} \, \text{T} \]
\[ B = \frac{2 \times 2 \times 0.
25}{1} \times \frac{10^{-10}}{10^{-6}} \, \text{T} \]
\( 2 \times 0.
25 = 0.
5 \).
So \( 2 \times 2 \times 0.
25 = 2 \times 0.
5 = 1 \).
\[ B = 1 \times 10^{-10 - (-6)} \, \text{T} = 1 \times 10^{-10+6} \, \text{T} = 1 \times 10^{-4} \, \text{T} \]
We need the answer in microtesla (\( \mu\text{T} \)).
\( 1 \, \mu\text{T} = 10^{-6} \, \text{T} \).
\[ 10^{-4} \, \text{T} = 10^{-4} \times 10^6 \, \mu\text{T} = 10^2 \, \mu\text{T} = 100 \, \mu\text{T} \]
This matches option (1).