The relationship between pressure drop (\( \Delta P \)), airflow quantity (\( Q \)), and resistance (\( R \)) in an airway follows \( \Delta P = R Q^2 \).
For resistances connected in parallel, the formula for the equivalent resistance (\( R_{eq} \)) is:
\[
\frac{1}{\sqrt{R_{eq}}} = \sum_{i=1}^{n} \frac{1}{\sqrt{R_i}}
\]
In this case, with three airways:
\[
\frac{1}{\sqrt{R_{eq}}} = \frac{1}{\sqrt{R_1}} + \frac{1}{\sqrt{R_2}} + \frac{1}{\sqrt{R_3}}
\]
Given resistances are:
\( R_1 = 4.0\ \text{Ns}^2\text{m}^{-8} \)
\( R_2 = 6.25\ \text{Ns}^2\text{m}^{-8} \)
\( R_3 = 9.0\ \text{Ns}^2\text{m}^{-8} \)
Substitute the values into the formula:
\[
\frac{1}{\sqrt{R_{eq}}} = \frac{1}{\sqrt{4.0}} + \frac{1}{\sqrt{6.25}} + \frac{1}{\sqrt{9.0}}
\]
Calculate the square roots:
\( \sqrt{4.0} = 2.0 \)
\( \sqrt{6.25} = 2.5 \)
\( \sqrt{9.0} = 3.0 \)
Now substitute these back:
\[
\frac{1}{\sqrt{R_{eq}}} = \frac{1}{2.0} + \frac{1}{2.5} + \frac{1}{3.0}
\]
Calculate the fractions:
\[
\frac{1}{\sqrt{R_{eq}}} = 0.5 + 0.4 + \frac{1}{3}
\]
\[
\frac{1}{\sqrt{R_{eq}}} \approx 0.5 + 0.4 + 0.3333...
\]
\[
\frac{1}{\sqrt{R_{eq}}} \approx 1.2333...
\]
Solve for \( \sqrt{R_{eq}} \):
\[
\sqrt{R_{eq}} = \frac{1}{1.2333...} \approx 0.81081...
\]
Finally, square the result to find \( R_{eq} \):
\[
R_{eq} = (0.81081...)^2 \approx 0.6574...
\]
Rounding off to 2 decimal places:
\[
R_{eq} \approx 0.66\ \text{Ns}^2\text{m}^{-8}
\]
Answer:
The equivalent resistance of the network in Ns\( ^2 \)m\( ^{-8} \) is 0.66 (rounded off to 2 decimal places).
The equivalent resistance is \( \boxed{0.66\ \text{Ns}^2\text{m}^{-8}} \).